表題番号:2023C-513
日付:2024/03/22
研究課題先端データ科学技法のビジネス分野への応用と基礎的課題の発見
研究者所属(当時) | 資格 | 氏名 | |
---|---|---|---|
(代表者) | 社会科学総合学術院 社会科学部 | 准教授 | 須子 統太 |
(連携研究者) | 社会科学総合学術院 | 教授 | 仲道祐樹 |
(連携研究者) | データ科学センター | 教授 | 野村亮 |
- 研究成果概要
- 本研究課題では,当初ビジネス分野におけるAIや機械学習などの先端データ科学技法の応用を目的としていたが,計画を一部変更し,社会科学分野,特に法律分野における応用についての研究を行った.具体的には,刑法の研究における定量分析や法律業務の支援を目的とし,生成AIを用いた刑事裁判例における構成要件該当事実の抽出手法の開発と評価を行った.構成要件とは刑法の条文に規定されている犯罪が成立するために満たされるべき要件を表す.刑事裁判例において具体的な事実のどの部分が構成要件として認定されているかを知ることは,刑法の研究において非常に重要な分析となる.しかしながら,大量の刑事裁判から構成要件要素を人手で抽出するには高い専門性と労力が必要となる.そこでデータ科学を活用した自動抽出システムの開発を目指した.従来,研究代表者は同様の目的を持つシステムをBERTなどの自然言語モデルを利用して開発していたが実用に耐える精度には至らない結果に終わっていた.しかしながら,OpenAI社によって発表されたGPT4のAPIを用いることで高精度なシステムの構築が期待されたことから提案システムの開発を行った.法学研究者と連携することで,実際の刑事裁判例に対し,構成要件該当事実についての正しい抽出データを作成することで,提案システムがどの程度正しく該当箇所を抽出できるか評価を行った.その結果,いくつかの条文に対応する刑事裁判例に対し,非常に高い精度の抽出を行える事が分かった.本研究の結果については,2024年5月に開催される人工知能学会全国大会で発表を行う予定である.