表題番号:2022R-051
日付:2023/05/09
研究課題一般化Ramanujan予想の非緩増加カスプ形式の特徴付けによるアプローチ
研究者所属(当時) | 資格 | 氏名 | |
---|---|---|---|
(代表者) | 理工学術院 基幹理工学部 | 教授 | 成田 宏秋 |
- 研究成果概要
- 今回の研究期間において、オクラホマ大学のAmeya Pitale氏との共同研究により本研究課題に関係して次の研究を行った。fをレベル1の複素上半平面上のMaassカスプ形式とし、φ(f)を符号(1+,(8n+1)-)の直交群へのテータリフトとするとφ(f)のPeterssonノルムによる正規化のsup normが, ある正の整数dに対して, |λ|^d(λはLaplace固有値)によりこの直交群の算術商のみに依存した定数倍を除いて上から評価できるという観察結果を得た。Peter Sarnakが予想しているtrivial boundによるとdが2nまで評価が改善できるようであるがその改善には至らなかった。しかし既存の結果は任意のコンパクト集合に制限したもので我々はその制限なしで結果を得た。