表題番号:2022C-095 日付:2023/04/06
研究課題四元数離散系列表現を生成する保型形式のKoecher原理
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 基幹理工学部 教授 成田 宏秋
研究成果概要
多変数の正則保形形式で知られているKoecher原理は「多項式増大性が自動的に満たされる」という主張であるが、私は嘗て階数1の四元数ユニタリー群の四元数離散系列表現を生成する非正則保型形式でKoecher原理を証明した。よってこれが一般の四元数離散系列でも成立すると期待すのが自然と考えてきたが、今回の研究で例外型Lie群G_2上の保型形式について、成り立っていない、ないしは成り立っていとしても、現状では証明するのは難しいと考えるに至った。しかし一方, このG_2の保型形式の中でもカスプ形式の場合で, Koecher原理の研究で重要なFourier-Jacobi展開の理論のアイデアをまとめたと考え論文執筆の着手に至った。