表題番号:2020R-042 日付:2021/03/31
研究課題モード局在化センサにおけるばね定数の無限小化による感度向上の研究
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 大学院情報生産システム研究科 准教授 池橋 民雄
(連携研究者) Waseda IPS Master Student Zhiqiang Chen
研究成果概要
 Recently, mode localization is extensively surveyed to make high sensitivity sensors such as mass sensors and accelerometers. In these sensors, physical quantities are derived from amplitude change of weakly coupled resonators. An issue of this approach is the bending of frequency-amplitude curve caused by nonlinearity of the spring. The nonlinearity will become prominent if we employ electrostatic force to realize the small coupling spring, which is an effective method to enhance the sensitivity. To analyze the nonlinearity, we first solved the coupled resonator system including nonlinear spring effects. By using the method of averaging, we derived equations that represents nonlinear amplitude frequency curves. The derived equations are found to be very useful in analyzing the nonlinearity of the coupled resonator system. The validity of the results are verified by FEM simulations. According to the result, the nonlinear behavior is highly dependent on the resonant modes and also on spring constant shift caused by measurements. This analysis paves the way to cancel or reduce the nonlinearity by measuring specific modes.