表題番号:2013A-6147 日付:2014/04/05
研究課題平面幾何を用いた3次元双曲Coxeter群の研究
研究者所属(当時) 資格 氏名
(代表者) 教育・総合科学学術院 教授 小森 洋平
研究成果概要
双曲空間における多面体で、面角が π/p (pは2以上の整数または∞) の値を持つ多面体をコクセター多面体という。コクセター多面体の各面に関する鏡映変換で生成される群は、双曲空間に等長的に作用する離散群で、双曲コクセター群と呼ばれ、もとのコクセター多面体はこの群の基本領域となる。この群Gの各面に関する鏡映変換からなる生成系をS としたとき、S による最短表示の長さがnとなるようなGの元 g の個数をa_n をする。このとき、コクセター系 (G,S) のgrowth function は a_n の母関数として定義され、常にある有理関数 R(z)=P(z)/Q(z) の原点におけるテイラー級数に一致する。このgrowth functionの性質を調べることは、離散群Gの幾何的性質を調べることに直結する。例えばコクセター多面体のG-軌道によるタイル張りが、どれくらいのスピードで双曲空間全体に広がっているかを測ることができる。このgrowth functionの収束半径の逆数はgrowth rateと呼ばれ、2次元と3次元のcocompactな双曲コクセター群については代数的整数、特にSalem 数になることが知られている。現在3次元のcofiniteな双曲コクセター群の場合についてそのgrowth rateの数論的性質を主に研究しているが、その際にVinbergを中心とするロシア・スクールによる、面の数が4と5の3次元コクセター多面体の分類結果を用いてきた。そこで今回の特定課題研究では、この分類の別証明を与え、結果を拡張するために、カスプを持つコクセター多面体を平面幾何を用いて分類することを考察した。具体的にはカスプを無限遠点に置き、そこから多面体の各面を複素平面に射影することで、平面上の円の配置の幾何の問題に置き換えることができる。学振特別研究員 DC2 の梅本悠莉子との共同研究で3次元のcofiniteな双曲コクセター多面体のうち面の数が4と5の分類を行った。具体的にはカスプを持つ四面体とピラミッドの場合に限り、結果を得ることができ現在論文を準備中である。これら2つの場合にうまくいった主な理由は、単位円内の3種類のユークリッド的なコクセター三角形または長方形を、円周とπ/pの角度で位置するような配置の組合せがすべて数え上げられる点にある。またその考察の過程でコクセター多面体どうしに包含関係があれば、それらのgrowth rateの間に大小関係が成立するという新しい現象をみつけることができた。この現象がより複雑なコクセター多面体でも成立するかは興味深い問題と思われる。プリズムに関しては無限系列であることの困難性から今回の研究期間内では最終結果を得ることができなかったが、Kaplinskayaの分類で見落とされているコクセター多面体もあり、別証明を新たに与える必要性を今でも感じている。また分類そのものが未だ未解決である面の数が6以上の3次元コクセター多面体の場合にも貢献できる新しいアイデアとして、今回の平面図形を用いる方法は有用であると思われる。