表題番号:2011B-115 日付:2012/04/13
研究課題低次元半導体結晶における歪場の形成機構とフォノンダイナミクスの解明
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 准教授 渡邉 孝信
研究成果概要
酸化絶縁膜に覆われ歪を帯びた低次元半導体結晶の格子ダイナミクスを、理論計算と実験の両面から明らかにすることを最終目標に掲げている。本特定課題研究では、研究代表者が開発した分子動力学計算技術を用いて、ナノサイズの曲率半径を有する酸化膜-半導体界面モデルを作成し、歪および応力の分布、フォノン分散関係の計算、ならびにシリコンナノワイヤデバイスの製作、低温電気特性評価に取り組み、主に以下の成果を得た。

・ナノスケール半導体中のフォノン分散関係の計算
分子動力学シミュレーションで得られる原子座標の時系列データを時空間フーリエ変換する方法でSiナノワイヤ構造のフォノン分散関係を計算した。独自に開発したSi,O混在系用原子間相互作用モデルを用いて酸化被膜を形成したところ、バルクSi結晶の分散関係の概形を維持しつつ、音響フォノン分枝の低エネルギー側に新たな状態が発生する傾向が見られた。低エネルギー領域におけるこの状態の出現が、熱伝導係数の低下と関係していると考えられる。

・ナノワイヤ型ショットキーダイオードの製作と電気特性評価
デバイス間の特性ゆらぎを回避できる新原理トランジスタの候補として、当研究グループではショットキーバリア型トンネルFET(Schottky Barrier Tunnnel FET; SBTFET)に注目している。デバイスシミュレーションによる検討の結果、SBTFETを極細のNW型にした場合、従来型OSFETを凌ぐ電流駆動能力が得られる可能性があることが判明した。この予測を実験的に検証するため、ナノワイヤ型のSBTFETの製造プロセスの立ち上げに取り組んだ。本年度はシリサイド化プロセスによりナノサイズのショットキー接合を形成し、ショットキーダイオード特性の線幅依存性を評価した。

・走査型トンネル顕微鏡による立体半導体表面の観察
ナノワイヤデバイス中の組成変化や不純物イオン分布をSTMで直接観察する実験に取り組み、高さ50nm、幅1 umの細線構造のSTM像取得に成功した。表面準位を除去しSi中のポテンシャル分布を見やすくするため、STMチェンバー内で水素終端する技術も確立した。