表題番号:2008B-105 日付:2009/03/31
研究課題タンパク分解に始まるシナプスから核への情報伝達の神経可塑性における役割
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 教授 井上 貴文
研究成果概要
シナプス可塑性の機構を解明することは脳の高次機能を理解するうえで不可欠である。遺伝子発現変化を介して数日あるいはそれ以上持続するシナプスの長期可塑性には核での遺伝子発現変化を促すためにシナプス後部から核への情報伝達機構が存在すると考えられている。この情報伝達の媒体としては、PKA, MAPキナーゼ, CaMキナーゼ群の活性化による核内転写因子の調節経路が注目されているが、本研究ではRIPにより特異的切断を受ける一群の膜タンパクによる、細胞内での増幅ステップを含まない新しい情報伝達系をとりあげた。RIPを受けることが知られているタンパク質のうち、シナプス後部に存在するものとしてアミロイド前駆体タンパク(APP)、Alcadeinα、N-cadherin、E-cadherinを選び、これらが実際にシナプス後部で刺激依存的に切断されC末断片が細胞質へと放出される様態を観察した。マウス海馬から調製した初代培養神経細胞を用い、免疫組織化学によりこれらタンパク質が実際にシナプスに存在することを確認した後、これらタンパク質と蛍光タンパク質の融合タンパク質を発現するプラスミドベクターを初代培養神経細胞にて発現し、これらタンパク質がシナプス後部に局在することを更に確認した。シナプス後部に蛍光蛋白質との融合タンパク質が発現している状態で、神経細胞を刺激し、蛍光強度の変化を観察した。刺激にはKチャンネル阻害薬の4-APを用いた。その結果、N-cadherinのシグナルは刺激後10分程でシナプス後部から減少し、核の蛍光シグナルは増強した。E-cadherinは逆に刺激後シナプス後部で増加が見られた。APPとAlcadeinαでは刺激による変化は認められなかった。以上の結果から、刺激依存的なRIPがシナプス後部で働いており、この機構は標的タンパク質選択的であることがわかった。RIPによる膜タンパクのダイナミックなターンオーバーがこの実験系で検討できることが明らかとなった。今後はこの知見をもとに、詳細に活動依存的、非依存的RIPを定量的に検討し、また切断されたC末断片がどのような経過をたどり核に到達するかを検討したい。