表題番号:2006B-175
日付:2007/03/17
研究課題非線形モデルによる高次のオプション評価
研究者所属(当時) | 資格 | 氏名 | |
---|---|---|---|
(代表者) | 理工学術院 | 助手 | 玉置 健一郎 |
- 研究成果概要
- 私は本年度Whittle measureによる高次漸近理論の研究を行い、この研究成果を学会等で発表しました。
時系列解析では、従属性をもつデータを扱うので、尤度が大変複雑になります。それ故、推定や検定において、Whittle likelihoodがよく用いられます。これは、対数正規尤度の近似となっており、真の尤度より計算が容易であるという利点があります。また、近年、正規定常過程に対して、Whittle measureのContiguityが示されました。本年度の研究では、正規定常過程に対して、Whittle measureにもとづく検定と正確なmeasureにもとづく検定の高次の性質を議論しました。まず、定常過程の正規性を仮定し、Whittle likelihoodより構成される検定統計量のクラスを考えます。次に、この検定統計量に対して、2次のEdgeworth展開を用いて、Whittle measureと真のmeasureの下でのLeCam's third lemma型の高次の漸布の変換公式を与えています。これにより、検定統計量のWhittle measureの下での検出力から真のmeasureの下での検出力が導き出せます。
現在、著書では、時系列の最適推測に基づいた金融工学を発展させつつあります。また、時系列モデルに対するベイズ手法によるアプローチを考え、Whittle likelihoodにもとづく推定量の事後確率の漸近的な性質を研究しています。この研究では、長期記憶過程を含む定常過程において、Whittle measureを用いたBernstein-von Mises theoremを示すことを目標としています。さらに、Nonergodicなモデルに対する上記の定理を得ることも目標としています。