表題番号:2006B-152 日付:2007/03/24
研究課題細胞骨格フィラメントの分子動力学と細胞動力学
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 助教授 高野 光則
研究成果概要
 細胞骨格フィラメントのダイナミクスはアクチン、チューブリン、線維状蛋白質の離合集散ダイナミクスである。本研究ではアクチンおよびチューブリンの多分子からなる系の分子動力学シミュレーションを行い、生命システム機能として興味深いアクチンフィラメントの「トレッドミル現象」や微小管の「動的不安定性」のメカニズムを分子動力学の立場から説明し、「分子動力学」と「細胞動力学」という生命システムの異なる階層の「動力学」の連関を理解することを目的とした。

 本年度は特にアクチンの分子動力学計算において研究の進展があったのでそれを報告する。アクチンはモノマー状態(G状態)とフィラメント状態(F状態)の2状態をとる。F状態ではアクチンが重合して2重螺旋状のフィラメント構造が形成される。アクチンはATP加水分解酵素でもあり,G状態(Gアクチン)では分子中央部にあるクレフト基底部の核酸結合部位にATPが結合しているが,F状態(Fアクチン)になると加水分解が促進され,F状態のモノマー(プロトマー)の大部分はADP結合状態に変化している。興味深いことにGアクチンがフィラメントに結合するときの親和性はATP結合状態とADP結合状態で異なり,ADP結合状態のGアクチンの解離定数の方が大きい。このため,一方の端ではATPを結合したGアクチンが次々に既存のフィラメントに結合してフィラメントが伸長し,他方の端ではATPが加水分解されてADP結合状態になったプロトマーが次々に解離していく,というような現象(トレッドミル現象)が生じる。

 結合している核酸によって解離定数が異なることから,アクチンは核酸依存的な構造状態変化を示すことが推測できる。実際,ATP加水分解にともないF状態のプロトマーの構造状態が変化し,それによりフィラメントが不安定化することが電子顕微鏡観察によって示唆されてきた。特に,ATPからADP結合状態への変化にともない,分子中央部のクレフトの閉開状態,サブドメイン2のD-loopと呼ばれる領域の構造状態,そしてクレフトをはさんだ2つのドメイン間のプロペラ(ねじれ)角の捩れ状態の3つが顕著に変化することが示唆された。しかし,最近解明されたGアクチンの結晶構造は,特にクレフト開閉状態とD-loopの構造状態に関して電顕の結果と一致しないことが明らかになってきた。電顕とX線による構造解析はそれぞれ一長一短があり,かつ両者が対立しているため,いまだにアクチンの核酸依存的な構造状態の解明には至っていない。

 そこで,本研究では,異なる核酸結合状態のGアクチンの分子動力学計算を多数行い,まず水中でのGアクチンの構造状態とその核酸依存性を調べることにした。特に,争点になっているクレフト開閉状態,D-loopの構造状態,プロペラ角の捩れ状態を中心に調べた。クレフトに関しては,40本のMDトラジェクトリーの平均は結晶構造からの有意なずれを示したものの,ATP結合状態とADP結合状態の間に有意な差はなく,ともに閉状態となった。しかし,個々のトラジェクトリーは開状態に達する大きな揺らぎを示し,さらに核酸がない状態では開状態になることが分かった。D-loopに関しては結晶構造ではATP結合状態でdisoder状態,ADP結合状態でαへリックスになることが示されていたが,これとは異なり,実際は動的なhelix-coil転移を示すことが分かった。プロペラ角については電顕結果と一致する結果が得られ,核酸依存的な構造状態変化はここに集約される可能性があることが分かった。これらのGアクチンの構造状態の核酸依存性の結果,およびF状態のアクチン5量体のMD計算結果からフィラメント不安定化機構について調べた。特に,F状態はプロトマー間の分子間相互作用によって安定化されるが,一方でプロトマーの内部には歪みが生じ(特にプロペラ角の自由度について),この歪みがF状態の不安定化を引き起こす,という機構が示唆された。