表題番号:2005B-252 日付:2006/03/12
研究課題分子動力学法によるナノスケールシリコン熱酸化プロセスシミュレータの開発
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 客員助教授(専任扱い) 渡邉 孝信
研究成果概要
 ナノスケールSi構造体の熱酸化プロセスを分子動力学計算手法で再現するシミュレーション技術の開発に向けて、SiO2膜の歪分布が酸化種の拡散挙動に与える影響を明らかにするため、ナノスケールSi構造体を覆う酸化被膜構造の大規模モデリングを実施した。Si(001)基板モデルを加工して矩形断面をもつシリコン細線構造を作製し、表面から一層ずつ酸化を繰り返して酸化膜部分を形成したところ、細線上面よりも側面にストレスが集中すること、残されたSi細線は側面から圧縮ストレスを受け、格子間隔が基板法線方向に伸びていることが明らかとなった。側壁のストレスが強いことは、Si細線の酸化で残される細線幅が一定となる実験事実を良く説明できる。
 また、本研究では、熱酸化を支配する新しいメカニズムも発見した。Siの熱酸化速度理論は、1965年に発表されたDeal-Grove理論がこれまで正当とされてきた。しかし我々の研究で、酸化種が界面に到達後直ちに酸化反応が起こるとするモデルでlayer-by-layer酸化現象が再現されることを突き止めたことから、初期酸化を界面反応律速過程とみなす従来理論を見直す必要が生じてきた。そこで、界面近傍に存在する構造遷移領域で酸化種拡散の活性化障壁が上昇して拡散が抑制され、運よく構造遷移領域を通過し界面に到達できた酸化種は直ちにSi基板を酸化する、とする拡散モデルを仮定した場合の酸化測度方程式を調べたところ、Deal-Groveと同様の線形-放物線形の酸化速度方程式になることがわかった。定数の一部の表式が異なっており、それは構造遷移領域の厚さをパラメータとして含む。この定数が実験値と一致するような構造遷移領域の厚さを求めたところ、約1nmと見積もられた。これはよく知られている構造遷移領域の厚さと一致しており、新モデルの妥当性を裏付けている。