表題番号:2004B-863 日付:2005/06/04
研究課題生体分子モーターの力学応答特性:シミュレーション・理論からのアプローチ
研究者所属(当時) 資格 氏名
(代表者) 理工学術院 専任講師 高野 光則
研究成果概要
本研究課題「生体分子モーターの力学応答特性」に関して、以下の3つの研究を行い、それぞれに関して興味深い結果が得られた。

1)ミオシン分子の力学的応答特性:
ミオシン分子のような巨大分子を扱うため、これまでに開発してきた弾性体モデルベースの粗視化モデルを用い、ミオシン分子のATP結合部位周辺に局所的な力、すなわち「摂動」が与えたとき、ミオシン分子がどのような「応答」、すなわち構造変化を誘起するかを研究した。従来から提唱されている「レバーアーム」仮説によると、ミオシン分子の力発生は、ATP加水分解サイクルにおいて、ミオシン分子のATP結合部位の局所的な構造が変化し、この局所構造変化がミオシン分子尾部(レバーアーム)のアクチンフィラメントに沿ったスイングを誘起する、と考えられてきた。本研究結果は、非常に興味深いことに、この仮説と真っ向から対峙するものとなった。すなわち、ATP加水分解サイクルで生じうるATP結合部位周辺の局所的構造変化は、アクチンフィラメントに沿ったレバーアームのスイングを直接的には誘起しない、という結果になった。これは、仮にレバーアームのスイングがあるとしても、直接アクトミオシンの力発生の原因にはならない、ということを示唆する。

2)計算結果のモデル依存性:
前述の結果が、計算モデルの精度不足によるアーテファクトであるという可能性を払拭するため、1)で用いた計算モデルを拡張し、より現実的なモデル(Goモデル、Janus-Goモデル、全原子モデル)の分子動力学計算を行った。この場合、大規模な構造変化をシミュレートするため、Transition Path Sampling法と呼ばれる手法を用い、より少ない計算コストで構造変化ダイナミクスの統計性を高める工夫をした。1)の結果は3N-6次元での主要な平衡揺らぎが反映されたものであるから、この主要平衡揺らぎのモデル依存性を調べれば良い。その結果、期待通りに主要平衡揺らぎの頑健性が示され、計算結果の信頼性が示された。

3)Gアクチンの全原子モデル分子動力学シミュレーション:
Gアクチン(アクチンモノマー)を水溶液中に溶解させ、平衡揺らぎダイナミクスを解析した。Gアクチンには①クレフトの開閉、および②サブドメイン2と呼ばれる部位の構造形成崩壊、という顕著な2つのダイナミクスの存在が結晶構造解析から示されており、それらがアクチンの重合やミオシンとの相互作用に影響することが示唆されてきた。今回の水溶液中のアクチン単量体の分子動力学計算によって、これら2つのダイナミクスの兆候が実際に確認することができた。これらのダイナミクスが、アクチン分子内部のATP結合部位の局所構造変化、すなわち摂動によって、応答として誘起されるか、そして、アクチンフィラメント全体にかかる張力・応力に対して個々のアクチン分子がどのように応答すのか、次の研究課題としていく。