表題番号:2000A-887 日付:2006/10/02
研究課題マッチング問題のコアに関する理論的研究
研究者所属(当時) 資格 氏名
(代表者) 社会科学部 助教授 戸田 学
研究成果概要
 本研究はマッチング問題のコアの持つ数学的及び経済学的な性質を抽出し、それらが逆にコア自体を特徴づけることを示すことが目的である。マッチング問題とは2種類のタイプの主体が存在するような状況で何らかの取引関係が異なるタイプの主体間のみにおいて行われるようなモデルのことである。具体的には労働市場、オークション、結婚市場などを考えればよい。マッチング問題にはその構造において、数種類の差違が存在する。すなわち、取引が1対1で行われるのか、1対多で行われるのか、2タイプの主体の人数が等しいか否か、取引を行わないという選択を含めるか否か、選好順序が強順序であるか、弱順序を許容するのか、である。これに応じてマッチング問題は合計16クラスに分類される。それぞれのクラスにおいてコアの持つ性質は微妙に異なり、これが分析を複雑にしている。そこで本研究は、次の結果を示した。取引が1対1で2タイプの人数が一般に異なり取引を行わない選択が可能であり、弱順序を許容しない場合において、(1)コアはパレート最適性、人口単調性、マスキン単調性を満たす唯一の解である、(2)コアはパレート最適性、人口単調性、整合性を満たす唯一の解である、(3)したがって、パレート最適性と人口単調性の下でマスキン単調性と整合性は同値である、(4)コアはパレート最適性、相互最適性、マスキン単調性を満たす唯一の解である、(5)コアはパレート最適性、相互最適性、整合性を満たす唯一の解である、(6)したがって、パレート最適性と相互最適性の下でマスキン単調性と整合性は同値である、(7)よって、同様の条件下でナッシュ遂行可能性は整合性と同値である。さらに、本研究では通常の整合性に加えて Davis-Maschler タイプの整合性の条件を初めてマッチング問題において定式化した。それを用いて、次の結果を導いている。(7)コアは個別合理性、パレート最適性、マスキン単調性、Davis-Maschler 整合性を満たす唯一の解である。したがって、(8)パレート最適性とマスキン単調性の下で、解が人口単調性を満たすことは、それが個別合理性と Davis-Maschler 整合性を満たすことと同値である。本研究は、選好関係が弱順序となる可能性を考慮すると、次のような結果が得られることも示した。(9)コアは個別合理性、パレート最適、マスキン単調性、整合性を満たす唯一の解である。さらに、以上の結果を取引が1対多であるような場合に拡張した。具体的には、(10)この場合のコアは、パレート最適性、人口単調性、マスキン単調性を満たす唯一の解である、(11)コアは、パレート最適、人口単調性、整合性を満たす唯一の解である、(12)よって、1対多であるような取引が行われる場合でも、(13)パレート最適性と人口単調性の下で、マスキン単調性と整合性は同値である、したがって、(14)同様の条件の下でナッシュ遂行可能性は整合性と同値である。(なお、本研究の結果は学術雑誌に投稿中である。)