表題番号:1998A-630 日付:2003/05/08
研究課題分散不均一な回帰モデルにおける多段階推定量の精度の研究
研究者所属(当時) 資格 氏名
(代表者) 理工学部 助手 井上 淳
研究成果概要
昨年度に Communications in Statistics - Theory and Methods に投稿した論文 ``Asymptotic Improvement of the Graybill - Deal estimator." (*この論文は1999年2月に刊行された) の結果について再検討を行った。当初は、各標本内の繰り返し数の最小値 (= m)が6以上の場合のみを、すなわち対象とする不偏推定量を基準化したものが漸近的に正規分布に従う場合のみを考慮していた。これは、m が5以下の場合は推定量の漸近分散が発散してしまうため、意味がないと考えたことによる。しかしながら、これはレフェリーからも指摘されたことではあるが、(経時測定データの解析などの)現実的な立場からは、標本の数が大きい一方で、同一条件下(具体的には、測定誤差の分散が同一であるという条件下)で反復測定して得られるデータ数が極端に少ないということがあり、このような場合においても Feasible GLS(実行可能な一般化最小二乗推定量)、最尤推定量、Neyman - Scott 推定量などの挙動を調べておく必要があった。各推定量の挙動を数学的に厳密に調べることは、非常に難しい。そこで、大まかな挙動を知るために、分散の不均一性の程度と m の値を色々と変えてモンテカルロ・シミュレーションを行い、推定量の精度の比較をしてみた。シミュレーションの回数は2万回とし、比較の基準は平均二乗誤差とした。その結果、m が5以下の場合にも多くの状況で Feasible GLS の改良が見られることが分かった。更に(実行したシミュレーションの例では)標本数が10~20程度で既に改良が起こっていることが副次的に分かり、この問題に対する漸近理論の有効性が暗示された。現在は、この結果の数学的裏付けを試みている。