表題番号:1998A-611 日付:2002/02/25
研究課題非線形拡散方程式系および関連する楕円型方程式系の解集合の研究
研究者所属(当時) 資格 氏名
(代表者) 理工学部 教授 山田 義雄
研究成果概要
 上記研究課題のもと集中的に扱った方程式は非線形拡散項をもつ反応拡散方程式系のうち
Ut=△[(1+αu+βv) u]+u (a-bu-cv)、Vt=△[(1+γu+δv)v]+v (p-qu-rv)
の形のものである。これは競合する2種類の生物の固体数密度u、vの時間変化を表現したロトカ・ボルテラ型方程式に、固体数密度に依存する非線形拡散項を加えたものである。生物学的には、棲み分け現象を記述するモデルとして提起されたものであるが、数学的にも初期値境界値を与えたときの大域的可解性や定常解の構成とその形状や安定性の解析が重要な問題となる。得られた成果は(1)非定常問題の大域的可解性と(2)定常解集合の構造の二つに大別される。まず、(1)については空間次元が1または2のときに限定されるが、Yagiによって得られた大域解存在のための十分条件を拡張することに成功した。今後の課題は空間次元が3以上のケースでの解析である。(2)については、同次ディリクレ条件のもとで正値解(共存解とも呼ばれる)がいかなる状況で存在するか、またその個数はどうなるか、に焦点を絞った。定常問題は準線形楕円型方程式系の形になるが、適当な変数変換によりコンパクト写像に対する不動点を求める問題に帰着される。したがって、正値解はDancerによって開発された正錘上の写像度の理論により求められる。この結果は分岐理論の立場からも解釈することができ、共存解のつくる分岐枝がどのようにのびていくかもわかる。さらに、局所的分岐理論と写像度理論を組み合わせて2個以上の共存解が存在するための条件をわかりやすい形で導くことにも成功した。これらの理論的結果を数値実験により検証すると、共存解の集合は非線形拡散の効果により非常に複雑な様相を呈していることが示唆される。定常解の形状や安定性なども含めて今後も解析を要する課題が多い。