表題番号:1998A-117 日付:2002/02/25
研究課題非線形楕円形方程式と発展方程式の研究
研究者所属(当時) 資格 氏名
(代表者) 理工学部 教授 大谷 光春
研究成果概要
 非有界領域における臨界ソボレフ指数を越える非線形性を有する非線形楕円形方程式に対して、以下の興味深い結果がえられた。
方程式 (E) -△u=|u|q-2u x∈Ω、 u(x)=x∈∂Ω
に対して、次の定理を得た。
(1)「Ω=RN\BR、・BR={x∈R;|x|≦R}、2*<q<∞(2*は、ソボレフ型埋蔵H10(Ω)⊂Lq(Ω)の臨界指数)とするとき、(E)はH1O(Ω)⊂Lq(Ω)に属する(球対称)非自明解をもつ(大谷・橋本)・」1<q≦2*の場合には、非自明解が存在しないことが既に知られており、(大谷・橋本)、有界領域に対する既知の結果(1<q<2*のき存在、2*≦q<∞のとき非存在>との双対性から、解の存在が予想されていたが、この長年の未解決問題が肯定的に解決された意義は大きい。
 また今まで、非有界領域における臨界ソボレフ指数を越える非線形性を有する非線形楕円形方程式に対する変分的解法が皆無であったが、この定理を証明するために、「適当な変換によって、外部領域における問題を、円環領域における境界に特異性を有する楕円形方程式に変換し、これを変分的な方法で解くことに帰着する」という全く新しい技法が開発されたことは極めて意義深い。
(2) Ω=Ω×RN-d、Ωdをd-次元円環領域とする。非自明解の存在に関して、今まで解明されていなかった場合2*<q≦Nd=2(N-d+1)/N-d-1が解明された:(ⅰ)2*<q≦Ndの場合は、非自明解が存在し、(ⅱ)q=Ndの場合は、解が存在しない。即ち、既存の結果とあわせると「(ⅰ)1<q≦Ndのとき存在(ⅱ)Nd≦qのとき非存在」となり、この問題に対する完全な解答が得られたことになる。この事実から、「領域のd次元対称性は、実効的次元を(d-1)次元だけ減ずる効果をもたらす」ことが結論づけられた。