表題番号:1995A-121 日付:2002/02/25
研究課題ゲージ群の幾何
研究者所属(当時) 資格 氏名
(代表者) 理工学部 教授 郡 敏昭
研究成果概要
次の結果を得た。
I. 境界を持つ多様体でのゲージ項のあるディラック作用素の指数定理とAxial anomaly.
4次元空間の半球において,境界球面の近くでは自明な形をしているヴェクトルポテンシャルをAとし,Aをゲージ項とするカイラルディラック作用素をDAとする。ゲージ項なしのディラック作用素の境界球面での接平面成分(ハミルトニアン)の正の固有値をもつ固有スピノール全体の空間への射影をPとする。境界条件Pφ=0(アチャ・シンガー・パトディ境界条件)を与えたときのDAの指数の計算が重要である。
これについて二宮-Tanは,
index DA = deg (h)
ただし境界の近くでA=h-1dh,を証明した(1985年)。筆者はより一般にAxial成分を持たないヴェクトルポテンシャルに対しDAの指数と,境界面上の無限次元グラスマン多様体の中でAが定める成分の次元との関係を考察した後,境界近傍でAが自明な場合,Aに依らずアチャ・シンガー・パトディ境界条件が定まることを示し,上記の二宮-Tanの結果を系として導く定理を証明した。これは物理におけるゲージ場の理論においても重要な結果であると思う。
II. Ω3Gのアーベル拡大.
3次元球面からリー群G=SU(N)への写像のつくるリー群のアーベル拡大を構成することは,それに附随したアノマリーバンドルとともに重要であり,J. マイケルソンが構成している。彼が構成にもちいた2-コサイクルはS3上のゲージポテンシャル全体Αに値をとるものであった。本研究で研究者はΩ
3Gに値をとる2-コサイクルにより同様のアーベル拡大が得られることを示した。さらに,このアーベル拡大の方法によりWess-Zumino-Wittenモデルの4次元多様体への拡張を構成できることを現在示しつつある。