Comparison of a murine model with humans using noninvasive measuring of biomagnetism, and its application in brain disease diagnosis

2011-0517-04
researcher's name
about researcher ISHIYAMA, Atsushi Professor
affiliation
Faculty of Science and Engineering School of Advanced Science and Engineering
research field
Power engineering/Power conversion/Electric machinery
keyword

background

Brain diseases are difficult to observe directly due to the skull, making it hard to gain an accurate understanding of their state.

summary

SQUID (superconducting quantum interference device), which is a high sensitivity magnetic sensor, is able to measure weak magnetic fields (magnetoencephalographs) generated by neurotransmissions (brain activity) without being obstructed by the skull. For example, using SQUID to take measurements of the area around a brain tumor that has been found through MRI, enables a more accurate ascertainment of its position and state. This not only gives the surgeon more information before an operation, but it can also be used to obtain informed consent regarding side effects after surgery.

application/development

We are also developing measuring systems to lighten work currently being carried out manually by doctors, such as an automatic system for detecting abnormal waves that trigger epilepsy. Furthermore, the technology can be applied to the building of systems for diagnosing brain diseases other than those given as examples.

predominance

Measuring systems can be developed in accordance with the requirements of their use.

purpose of providing seeds

Sponsord research, Collaboration research, Technical consultation

same researcher's seeds

  • Investigation of prenatal care through noninvasive diagnosis and analysis
  • Visualization of the brain’s response to stimuli (smell) in a murine model using noninvasive measuring of biomagnetism
  • Comparison of a murine model with humans using noninvasive measuring of biomagnetism, and its application in heart disease diagnosis
posted: 2014/05/21